Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The rare TXNRD1_v3 ("v3") splice variant of human thioredoxin reductase 1 protein is targeted to membrane rafts by N-acylation and induces filopodia independently of its redox active site integrity.

Identifieur interne : 000702 ( Main/Exploration ); précédent : 000701; suivant : 000703

The rare TXNRD1_v3 ("v3") splice variant of human thioredoxin reductase 1 protein is targeted to membrane rafts by N-acylation and induces filopodia independently of its redox active site integrity.

Auteurs : Marcus Cebula [Suède] ; Naazneen Moolla ; Alexio Capovilla ; Elias S J. Arnér

Source :

RBID : pubmed:23413027

Descripteurs français

English descriptors

Abstract

The human selenoprotein thioredoxin reductase 1 (TrxR1), encoded by the TXNRD1 gene, is a key player in redox regulation. Alternative splicing generates several TrxR1 variants, one of which is v3 that carries an atypical N-terminal glutaredoxin domain. When overexpressed, v3 associates with membranes and triggers formation of filopodia. Here we found that membrane targeting of v3 is mediated by myristoylation and palmitoylation of its N-terminal MGC motif, through which v3 specifically targets membrane rafts. This was suggested by its localization in cholera toxin subunit B-stained membrane areas and also shown using lipid fractionation experiments. Utilizing site-directed mutant variants, we also found that v3-mediated generation of filopodia is independent of the Cys residues in its redox active site, but dependent upon its membrane raft targeting. These results identify v3 as an intricately regulated protein that expands TXNRD1-derived protein functions to the membrane raft compartment.

DOI: 10.1074/jbc.M112.445932
PubMed: 23413027
PubMed Central: PMC3617239


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The rare TXNRD1_v3 ("v3") splice variant of human thioredoxin reductase 1 protein is targeted to membrane rafts by N-acylation and induces filopodia independently of its redox active site integrity.</title>
<author>
<name sortKey="Cebula, Marcus" sort="Cebula, Marcus" uniqKey="Cebula M" first="Marcus" last="Cebula">Marcus Cebula</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm</wicri:regionArea>
<wicri:noRegion>SE-171 77 Stockholm</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moolla, Naazneen" sort="Moolla, Naazneen" uniqKey="Moolla N" first="Naazneen" last="Moolla">Naazneen Moolla</name>
</author>
<author>
<name sortKey="Capovilla, Alexio" sort="Capovilla, Alexio" uniqKey="Capovilla A" first="Alexio" last="Capovilla">Alexio Capovilla</name>
</author>
<author>
<name sortKey="Arner, Elias S J" sort="Arner, Elias S J" uniqKey="Arner E" first="Elias S J" last="Arnér">Elias S J. Arnér</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23413027</idno>
<idno type="pmid">23413027</idno>
<idno type="doi">10.1074/jbc.M112.445932</idno>
<idno type="pmc">PMC3617239</idno>
<idno type="wicri:Area/Main/Corpus">000762</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000762</idno>
<idno type="wicri:Area/Main/Curation">000762</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000762</idno>
<idno type="wicri:Area/Main/Exploration">000762</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The rare TXNRD1_v3 ("v3") splice variant of human thioredoxin reductase 1 protein is targeted to membrane rafts by N-acylation and induces filopodia independently of its redox active site integrity.</title>
<author>
<name sortKey="Cebula, Marcus" sort="Cebula, Marcus" uniqKey="Cebula M" first="Marcus" last="Cebula">Marcus Cebula</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm</wicri:regionArea>
<wicri:noRegion>SE-171 77 Stockholm</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moolla, Naazneen" sort="Moolla, Naazneen" uniqKey="Moolla N" first="Naazneen" last="Moolla">Naazneen Moolla</name>
</author>
<author>
<name sortKey="Capovilla, Alexio" sort="Capovilla, Alexio" uniqKey="Capovilla A" first="Alexio" last="Capovilla">Alexio Capovilla</name>
</author>
<author>
<name sortKey="Arner, Elias S J" sort="Arner, Elias S J" uniqKey="Arner E" first="Elias S J" last="Arnér">Elias S J. Arnér</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acylation (MeSH)</term>
<term>Alternative Splicing (MeSH)</term>
<term>Amino Acid Motifs (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Cell Line, Tumor (MeSH)</term>
<term>Cysteine (genetics)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Green Fluorescent Proteins (metabolism)</term>
<term>HEK293 Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Lipids (chemistry)</term>
<term>Membrane Microdomains (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Pseudopodia (metabolism)</term>
<term>Recombinant Fusion Proteins (metabolism)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Thioredoxin Reductase 1 (chemistry)</term>
<term>Thioredoxin Reductase 1 (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acylation (MeSH)</term>
<term>Cellules HEK293 (MeSH)</term>
<term>Cystéine (génétique)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Humains (MeSH)</term>
<term>Lignée cellulaire tumorale (MeSH)</term>
<term>Lipides (composition chimique)</term>
<term>Microdomaines membranaires (métabolisme)</term>
<term>Motifs d'acides aminés (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines de fusion recombinantes (métabolisme)</term>
<term>Protéines à fluorescence verte (métabolisme)</term>
<term>Pseudopodes (métabolisme)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Thioredoxin reductase 1 (composition chimique)</term>
<term>Thioredoxin reductase 1 (génétique)</term>
<term>Transduction du signal (MeSH)</term>
<term>Épissage alternatif (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutaredoxins</term>
<term>Lipids</term>
<term>Thioredoxin Reductase 1</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cysteine</term>
<term>Thioredoxin Reductase 1</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Green Fluorescent Proteins</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Lipides</term>
<term>Thioredoxin reductase 1</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cystéine</term>
<term>Thioredoxin reductase 1</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Membrane Microdomains</term>
<term>Pseudopodia</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Microdomaines membranaires</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines à fluorescence verte</term>
<term>Pseudopodes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acylation</term>
<term>Alternative Splicing</term>
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Catalytic Domain</term>
<term>Cell Line, Tumor</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Oxidation-Reduction</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Homology, Amino Acid</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acylation</term>
<term>Cellules HEK293</term>
<term>Domaine catalytique</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Lignée cellulaire tumorale</term>
<term>Motifs d'acides aminés</term>
<term>Mutation</term>
<term>Oxydoréduction</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Transduction du signal</term>
<term>Épissage alternatif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The human selenoprotein thioredoxin reductase 1 (TrxR1), encoded by the TXNRD1 gene, is a key player in redox regulation. Alternative splicing generates several TrxR1 variants, one of which is v3 that carries an atypical N-terminal glutaredoxin domain. When overexpressed, v3 associates with membranes and triggers formation of filopodia. Here we found that membrane targeting of v3 is mediated by myristoylation and palmitoylation of its N-terminal MGC motif, through which v3 specifically targets membrane rafts. This was suggested by its localization in cholera toxin subunit B-stained membrane areas and also shown using lipid fractionation experiments. Utilizing site-directed mutant variants, we also found that v3-mediated generation of filopodia is independent of the Cys residues in its redox active site, but dependent upon its membrane raft targeting. These results identify v3 as an intricately regulated protein that expands TXNRD1-derived protein functions to the membrane raft compartment.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23413027</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>288</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2013</Year>
<Month>Apr</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>The rare TXNRD1_v3 ("v3") splice variant of human thioredoxin reductase 1 protein is targeted to membrane rafts by N-acylation and induces filopodia independently of its redox active site integrity.</ArticleTitle>
<Pagination>
<MedlinePgn>10002-11</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M112.445932</ELocationID>
<Abstract>
<AbstractText>The human selenoprotein thioredoxin reductase 1 (TrxR1), encoded by the TXNRD1 gene, is a key player in redox regulation. Alternative splicing generates several TrxR1 variants, one of which is v3 that carries an atypical N-terminal glutaredoxin domain. When overexpressed, v3 associates with membranes and triggers formation of filopodia. Here we found that membrane targeting of v3 is mediated by myristoylation and palmitoylation of its N-terminal MGC motif, through which v3 specifically targets membrane rafts. This was suggested by its localization in cholera toxin subunit B-stained membrane areas and also shown using lipid fractionation experiments. Utilizing site-directed mutant variants, we also found that v3-mediated generation of filopodia is independent of the Cys residues in its redox active site, but dependent upon its membrane raft targeting. These results identify v3 as an intricately regulated protein that expands TXNRD1-derived protein functions to the membrane raft compartment.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cebula</LastName>
<ForeName>Marcus</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moolla</LastName>
<ForeName>Naazneen</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Capovilla</LastName>
<ForeName>Alexio</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Arnér</LastName>
<ForeName>Elias S J</ForeName>
<Initials>ES</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>02</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008055">Lipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147336-22-9</RegistryNumber>
<NameOfSubstance UI="D049452">Green Fluorescent Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="C516124">TXNRD1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D054481">Thioredoxin Reductase 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000215" MajorTopicYN="N">Acylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017398" MajorTopicYN="Y">Alternative Splicing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049452" MajorTopicYN="N">Green Fluorescent Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008055" MajorTopicYN="N">Lipids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021962" MajorTopicYN="N">Membrane Microdomains</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="Y">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011554" MajorTopicYN="N">Pseudopodia</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054481" MajorTopicYN="N">Thioredoxin Reductase 1</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23413027</ArticleId>
<ArticleId IdType="pii">M112.445932</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M112.445932</ArticleId>
<ArticleId IdType="pmc">PMC3617239</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12391-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11675488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2005 Jul 18;170(2):261-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16027222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Mar;25(5):1980-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15713651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 1997;15:351-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9143692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Jul 8;1450(3):177-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10395933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Feb 19;274(8):4722-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9988709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Jun;1790(6):495-526</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19364476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2000;327:317-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11044994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Sep 28;43(38):12177-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15379556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Oct;1793(10):1588-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19654027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer. 2010 Apr 1;116(7):1629-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20151426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Differentiation. 2007 Feb;75(2):123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17316382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Jun;11(6):1357-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19061440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr. 2003 Sep;133(9):2721-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12949356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Jun 16;22(12):3015-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2007 May 21;177(4):717-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Mar 21;34(11):3813-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7893678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Feb 2;276(5):3106-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11060283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2001;2:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11737861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Aug 12;1451(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10446384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2009 Dec;10(12):1334-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19820694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Feb;78(4):1685-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14747534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 10;276(32):30542-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11375392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2011 Nov;119(3):521-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21426347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 1999 Feb;29(2):556-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10064071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2007 Nov;103 Suppl 1:135-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17986148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Apr 5;317(4):523-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11955007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 May;84(9):2708-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3106975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):41-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14980055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3673-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11259642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2006 Jul;47(7):1597-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16645198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Mar;1798(3):389-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19962956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Oct;267(20):6102-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11012661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 May 3;296(5569):913-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11988576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 1996 Aug 25;178(1):179-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8812119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photochem Photobiol. 1995 Oct;62(4):651-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7480149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1994 Sep 15;302 ( Pt 3):913-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7945220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2002 Aug 1;115(Pt 15):3119-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12118067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Feb 1;283(5):2814-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18042542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2010 Jun;51(6):1566-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20028662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2009 Apr;50 Suppl:S323-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18955730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(3):e16998</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21408225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Feb;23(3):916-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 May;15(5):2205-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14978216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1997 Jun;8(6):1159-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9201723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Mar 18;307(5716):1746-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15705808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Sep;9(9):1439-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17627472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Res Rev. 2004 Jan;24(1):40-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14595672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Dec 12;135(6):1085-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19070578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Nov 23;1441(2-3):162-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10570244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1999 Apr;261(2):405-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10215850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Nov 8;44(44):14528-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16262253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Nov;24(21):9414-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15485910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Cell Biol. 2007 Jul;85(5):378-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17325693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 15;280(28):26491-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15901730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Lett. 2004 Jul 15;94(3):247-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15275973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cancer Biol. 2006 Dec;16(6):420-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17092741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jan 1;327(5961):46-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20044567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2010 Dec 27;191(7):1229-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21187327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Proteomics. 2011 Apr;8(2):263-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21501018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1998 Jan 15;24(2):370-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9433913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2004 Mar 1;36(5):641-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14980707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Sep 7;32(35):9250-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8103677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2001 Dec 1;31(11):1287-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11728801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jan;9(1):25-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2000 May 1;347 Pt 3:661-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10769168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Sep;9(9):1427-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17627468</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Arner, Elias S J" sort="Arner, Elias S J" uniqKey="Arner E" first="Elias S J" last="Arnér">Elias S J. Arnér</name>
<name sortKey="Capovilla, Alexio" sort="Capovilla, Alexio" uniqKey="Capovilla A" first="Alexio" last="Capovilla">Alexio Capovilla</name>
<name sortKey="Moolla, Naazneen" sort="Moolla, Naazneen" uniqKey="Moolla N" first="Naazneen" last="Moolla">Naazneen Moolla</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Cebula, Marcus" sort="Cebula, Marcus" uniqKey="Cebula M" first="Marcus" last="Cebula">Marcus Cebula</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000702 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000702 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23413027
   |texte=   The rare TXNRD1_v3 ("v3") splice variant of human thioredoxin reductase 1 protein is targeted to membrane rafts by N-acylation and induces filopodia independently of its redox active site integrity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23413027" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020